

INSTITUTO NACIONAL DE PESQUISA ESPACIAL — INPE

SENSORIAMENTO REMOTO DA ATMOSFERA E PREVISÃO IMEDIATA *NOWCASTING* (PQ017)

SUA PROVA

 Além deste caderno contendo 5 (cinco) questões discursivas com as respectivas folhas de rascunho, você receberá do fiscal de prova as folhas de textos definitivos;

TEMPO

- Você dispõe de 4 (quatro) horas para a realização da prova;
- **2** (duas) horas após o início da prova, é possível retirar-se da sala, sem levar o caderno de questões;
- A partir dos 30 (trinta) minutos anteriores ao término da prova é possível retirar-se da sala levando o caderno de questões.

NÃO SERÁ PERMITIDO

- Qualquer tipo de comunicação entre os candidatos durante a aplicação da prova;
- Anotar informações relativas às respostas em qualquer outro meio que não seja no caderno de questões e nas folhas de textos definitivos;
- Levantar da cadeira sem autorização do fiscal de sala:
- Usar o sanitário ao término da prova, após deixar a sala.

INFORMAÇÕES GERAIS

- Verifique se seu caderno de questões está completo, sem repetição de questões ou falhas. Caso contrário, notifique imediatamente o fiscal da sala, para que sejam tomadas as devidas providências;
- Confira seus dados pessoais, especialmente nome, número de inscrição e documento de identidade e leia atentamente as instruções para preencher as folhas de textos definitivos;
- Para o preenchimento das folhas de textos definitivos, use somente caneta esferográfica, fabricada em material transparente, com tinta preta ou azul;
- Assine seu nome apenas no(s) espaço(s) reservado(s) no cartão de respostas;
- Caso você tenha recebido caderno de cargo diferente do impresso em suas folhas de textos definitivos, o fiscal deve ser obrigatoriamente informado para o devido registro na ata da sala;
- O preenchimento das folhas de textos definitivos é de sua responsabilidade e não será permitida a troca de folha de texto definitivo em caso de erro cometido pelo candidato;
- Para fins de avaliação, serão levadas em consideração apenas os textos das folhas de textos definitivos;
- A FGV coletará as impressões digitais dos candidatos na lista de presença;
- Os candidatos serão submetidos ao sistema de detecção de metais quando do ingresso e da saída de sanitários durante a realização das provas.
- Boa prova!

Pode-se dizer que o radar meteorológico é um dos melhores instrumentos para se realizar uma previsão de tempo em *nowcasting*, uma vez que de forma remota é possível se obter a estimativa do volume de chuva em uma área relativamente extensa e com uma sequência de varreduras é possível estimar a direção e a velocidade do sistema precipitante.

No entanto, a boa estimativa do volume de chuva estimada por um radar meteorológico está vinculada a alguns fatores, tais como:

- 1) Resolução temporal;
- 2) Resolução espacial;
- 3) Curvatura da terra;
- 4) Atenuação;
- 5) Super-refração atmosférica; e
- 6) Relação Z-R.

Escolha apenas *quatro* fatores entre os listados acima, e explique como eles estão relacionados à estimativa do volume de chuva e o que seria ideal para se obter uma melhor estimativa de precipitação.

Obs.: explique/aponte a viabilidade e/ou o custo para se implementar a solução proposta.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 	
20	
21	
22	
23	
24	
25	
26 	
27 	
28	
29 	
30	
31	
32	
33	
34	
35 	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Nos Estados do Rio Grande do Sul e de Santa Catarina, entre o final do mês de abril e os primeiros dias de maio de 2024, foram observadas tempestades com volumes de precipitação muito elevados, superando em poucos dias a média da precipitação mensal e ultrapassando recordes históricos de volumes de precipitação. Esse episódio provocou alagamentos em diversas cidades desses Estados, além da perda de dezenas de vidas humanas. Além disso, foram observados a ocorrência de tornados e quedas de granizo. Diversos estudos científicos publicados citam que os estados do Sul do Brasil são regularmente sujeitos a ocorrência de tempestades severas.

Sendo assim, responda aos itens a seguir.

- A) Cite os fenômenos meteorológicos que provocam essas tempestades extremas, especialmente como as que ocorreram recentemente em abril/maio de 2024.
- B) Indique se há algum período do ano mais suscetível a ocorrência dessas tempestades severas e o porquê disso.
- C) O fenômeno El Niño-Oscilação Sul contribui para a ocorrência desses eventos extremos de precipitação no Sul do Brasil? Justifique.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

Nowcasting é definido como um conjunto de técnicas aplicadas à previsão de tempo para um período de até 6 (seis) horas utilizando diferentes fontes de dados. Por ser uma metodologia recente e complexa, sua implementação operacional traz diversos desafios em função das limitações das técnicas.

- A) Descreva essas técnicas e suas principais limitações.
- B) O nowcasting de sistemas convectivos é dividido em, pelo menos, 3 (três) fases. Descreva cada uma dessas fases e cite as técnicas e principais produtos empregados.

1	 	
2	 	
3	 	
4	 	
5	 	
6	 	
7	 	
8	 	
9	 	
10	 	
11	 	
12	 	
13	 	
14	 	
15	 	
16	 	
17	 	
18	 	
19	 	
20	 	
21	 	
22	 	
23	 	
24	 	
25	 	
26	 	
27	 	
28	 	
29	 	
30	 	
31	 	
32	 	
33	 	
34	 	
35	 	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

As propriedades ópticas e microfísicas das nuvens são rotineiramente estimadas a partir de satélites usando informações contidas nas medidas de radiâncias espectrais emergentes no topo da atmosfera. Duas propriedades de nuvens importantes e estimadas via observações por satélites, a partir de refletâncias no espectro solar, são a Espessura Óptica das Nuvens (COT, do termo em inglês *Cloud Optical Thickness*) e o Raio Efetivo (R_{ef}) dos hidrometeoros que formam a nuvem, este último um parâmetro importante da microfísica das nuvens. COT e R_{ef} têm desempenhado papel relevante na caracterização das nuvens nas distintas escalas espaciais, do local à escala sinótica, assim como na avaliação dos seus impactos na transferência radiativa na atmosfera.

O método bi-espectral de refletância no espectro solar é uma das técnicas mais tradicionais implementadas nos algoritmos de satélites que procuram estimar COT e R_{ef}. Este método tem por base a combinação de medidas de refletância em canais do visível (VIS, por exemplo, 0,6 e 0,8 micrômetros) e do infravermelho próximo (NIR, por exemplo 1,6 ou 3,7 micrômetros). Esta combinação tem por princípio a dependência da radiância espectral solar nas duas regiões (VIS e NIR) medida pelos sensores a bordo dos satélites com características importantes das nuvens, especialmente no que se refere ao conteúdo e a distribuição de tamanho dos hidrometeoros. Além disso, pelo método bi-espectral, é ainda possível avaliar a presença das fases liquida e de gelo nas nuvens.

- A) Defina os termos Espessura Óptica (COT) e Raio Efetivo (Ref) de Nuvem.
- B) Explique os princípios que fundamentam a combinação de canais das duas regiões espectrais (VIS e NIR) nos sensores a bordo de satélite com o objetivo de estimar a Espessura Óptica da Nuvem (COT) e Raio Efetivo (R_{ef}) dos seus hidrometeoros.
 - B₁ Com base na diferença existente entre a interação da radiação na região espectral do NIR com as fases liquida e gelo, explique o princípio que sustenta o método bi-espectral para a inferência da presença das fases liquida e de gelo nas nuvens.
 - Obs.: fundamente suas respostas com base nas características da interação entre as características das nuvens e a radiação solar nas referidas regiões espectrais.
- C) Discuta os limites impostos ao método bi-espectral pelas características das próprias nuvens e pela natureza da superfície acima da qual as nuvens são encontradas.

Obs.: fundamente sua resposta com base nos princípios que regulam a interação entre a radiação nas regiões espectrais do VIS e NIR e as características das nuvens e das superfícies.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 	
20	
21	
22	
23	
24	
25 	
26 	
27	
28	
29 	
30	
31	
32	
33	
34	
35 	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

A definição de <u>tempestade convectiva severa</u> não é uniforme e por essa razão pode sofrer variações na sua caracterização de intensidade e limiares. No entanto, considere a definição mais comumente usada, cuja caracterização é dada pela ocorrência de ao menos uma das seguintes condições:

- I. presença de pedras de granizo em solo com diâmetro igual ou superior a 2cm;
- II. rajadas de vento à superfície iguais ou superiores a 50kt (~ 26m/s); e
- III. ocorrência de tornado. Percebe-se que correntes verticais intensas são características comuns às três condições citadas e apresenta influência na distribuição dos hidrometeoros assim como no processo de eletrificação das nuvens.

Nesse contexto, o uso de ferramentas de sensoriamento remoto é indispensável para a previsão de curtíssimo prazo.

Sendo assim,

- A) descreva como ocorre o processo de eletrificação de nuvens de tempestade.
- B) como as informações de descargas atmosféricas podem ser utilizadas para ajudar a prever a ocorrência de tempo severo em superfície?
- C) descreva as principais características do radar de dupla polarização e pelo menos três variáveis polarimétricas usadas na estimativa de chuva e granizo.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Realização

