

INSTITUTO NACIONAL DE PESQUISA ESPACIAL — INPE

MODELAGEM DO SISTEMA TERRESTRE COM ÊNFASE EM PROCESSOS DA CRIOSFERA (PQ023)

SUA PROVA

 Além deste caderno contendo 5 (cinco) questões discursivas com as respectivas folhas de rascunho, você receberá do fiscal de prova as folhas de textos definitivos;

TEMPO

- Você dispõe de 4 (quatro) horas para a realização da prova:
- 2 (duas) horas após o início da prova, é possível retirar-se da sala, sem levar o caderno de questões;
- A partir dos 30 (trinta) minutos anteriores ao término da prova é possível retirar-se da sala levando o caderno de questões.

NÃO SERÁ PERMITIDO

- Qualquer tipo de comunicação entre os candidatos durante a aplicação da prova;
- Anotar informações relativas às respostas em qualquer outro meio que não seja no caderno de questões e nas folhas de textos definitivos;
- Levantar da cadeira sem autorização do fiscal de sala:
- Usar o sanitário ao término da prova, após deixar a sala.

INFORMAÇÕES GERAIS

- Verifique se seu caderno de questões está completo, sem repetição de questões ou falhas. Caso contrário, notifique imediatamente o fiscal da sala, para que sejam tomadas as devidas providências;
- Confira seus dados pessoais, especialmente nome, número de inscrição e documento de identidade e leia atentamente as instruções para preencher as folhas de textos definitivos;
- Para o preenchimento das folhas de textos definitivos, use somente caneta esferográfica, fabricada em material transparente, com tinta preta ou azul;
- Assine seu nome apenas no(s) espaço(s) reservado(s) no cartão de respostas;
- Caso você tenha recebido caderno de cargo diferente do impresso em suas folhas de textos definitivos, o fiscal deve ser obrigatoriamente informado para o devido registro na ata da sala;
- O preenchimento das folhas de textos definitivos é de sua responsabilidade e não será permitida a troca de folha de texto definitivo em caso de erro cometido pelo candidato;
- Para fins de avaliação, serão levadas em consideração apenas os textos das folhas de textos definitivos;
- A FGV coletará as impressões digitais dos candidatos na lista de presença;
- Os candidatos serão submetidos ao sistema de detecção de metais quando do ingresso e da saída de sanitários durante a realização das provas.
- Boa prova!

A <u>amplificação polar</u> é um fenômeno já bem conhecido, mas com processos ainda difíceis de serem bem representados e previstos em modelos numéricos da criosfera e sistema terrestre. Sistemas de observação por satélite, com sensores imageadores e sondadores de microondas passivo, como o *Special Sensor Microwave Imager Sounder* (SSMIS), a bordo de satélites meteorológicos de órbita polar, vêm sendo usados para monitorar as regiões polares desde a década de 1980, sendo uma das principais fontes de dados para monitorar o fenômeno da amplificação polar. Além do SSMIS, existem outros sensores/missões de satélite mais recentes e dedicados, especificamente, ao monitoramento do gelo marinho e continental, utilizando diferentes tecnologias com sensores ativos, que permitem derivar ainda outras propriedades importantes para a observação e modelagem numérica da criosfera.

Sobre o tema, responda aos itens a seguir.

- A) Descreva brevemente o fenômeno da *amplificação polar*: o que o caracteriza, quais são suas principais causas e efeitos e as diferenças desse fenômeno no Ártico e Antártica.
- B) Cite dois principais produtos gerados por sensores de micro-ondas passivo (como o SSMIS) para monitorar o gelo marinho, e descreva brevemente sua importância para a modelagem numérica da criosfera.
- C) Cite o exemplo de um sensor/missão de satélite dedicado especificamente ao monitoramento do gelo marinho e continental (com sensor ativo) e cite um produto deste sensor, que tem potencial de melhorar a previsão numérica do gelo marinho por meio do seu uso na inicialização e/ou assimilação do modelo.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 	
20	
21	
22	
23	
24	
25 	
26 	
27 	
28	
29 	
30	
31	
32	
33	
34	
35 	

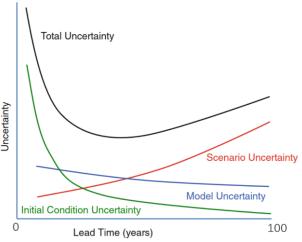
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

O estudo da *Atlantic Meridional Overturning Circulation* (AMOC) e de sua variabilidade tem ganhado impulso recentemente em função não somente de sua importância para o entendimento da circulação oceânica global, mas também devido à sua grande importância para o clima da Terra e para sua variabilidade.

Sobre o tema, responda aos itens a seguir.

- A) Defina, de forma precisa, o que é a AMOC.
- B) Descreva suas principais características e seus principais componentes.
- C) Avalie sua importância para o clima do planeta.
- D) Discuta sua importância para a variabilidade climática do planeta e sua possível relação com o aquecimento global observado atualmente.

1		
2	 	
3	 	
4		
5		
6		
7	 	
8	 	
9	 	
10	 	
11	 	
12	 	
13	 	
14	 	
15	 	
16	 	
17	 	
18	 	
19	 	
20	 	
21	 	
22	 	
23	 	
24	 	
25	 	
26	 	
27	 	
28	 	
29	 	
30	 	
31	 	
32	 	
33	 	
34	 	
35	 	


36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Os modelos do sistema terrestre (ESM) são projetados para simular aspectos relevantes do sistema terrestre, incluindo processos físicos, químicos e biológicos. Além dos componentes clássicos de um modelo climático (atmosfera, superfície continental, oceanos e gelo marinho), aos ESM podem ser adicionadas componentes que representam a química atmosférica e aerossóis, processos biogeoquímicos dos oceanos, modelos de vegetação dinâmica, geleiras, permafrost, entre outros. Os ESMs se diferenciam dos modelos acoplados oceano-atmosfera por representarem o ciclo de carbono, permitindo o cálculo interativo dos fluxos de CO₂ na atmosfera. Os ESMs podem ser aplicados para prever o clima futuro por meio de projeções (estimativas considerando cenários) e previsões (estimativas considerando o estado atual do clima). Entretanto, os ESMs, assim como modelos mais simplificados, têm diferentes fontes de incerteza, que passam a ser mais ou menos importantes dependendo da escala de tempo considerada.

No diagrama a seguir, adaptado de Gettelman e Rood (2016), tem-se a representação de quatro fontes de incerteza em um ESM, a saber:

- I. incerteza da condição inicial, ilustrada pela curva em verde;
- II. incerteza relacionada ao modelo (incompleta representação de processos físicos ou derivadas de engenharia de *software*, por exemplo), ilustrada pela curva em azul;
- III. incerteza relacionada ao cenário futuro (por exemplo, emissões de gases que afetam o clima), representada em vermelho;
- IV. incerteza total (a soma de três incertezas), representada pela curva em preto.

No diagrama, os tipos de incertezas são ilustrados como uma função do tempo.

Fonte: Demystifying Climate Models, A Users Guide to Earth System Models. Gettelman e Rood, Springer, 2016

Considerando o diagrama de fontes de incertezas em ESMs:

- A) Descreva a evolução das curvas azul e vermelha, justificando sua resposta e fornecendo exemplos de fontes de incertezas para as componentes oceanos, criosfera e atmosfera de um ESM.
- B) Com relação à curva verde, relacionada à incerteza da condição inicial fornecida para um ESM, pode-se concluir que o máximo da incerteza reside no estado inicial do sistema. A redução destas incertezas pode ser alcançada por meio de técnicas de assimilação de dados. Diferentes métodos são utilizados para assimilar dados em modelos dinâmicos. Particularmente, para modelos oceânicos e da criosfera, uma aproximação amplamente utilizada é o *Ensemble Optimal Interpolation* (EnOI). O EnOI é formalmente muito semelhante ao Ensemble Kalman Filter (EKF), mas com uma diferença importante.
 - Explique, em linhas gerais, a principal diferença entre os métodos EnOI e EKF. Em um caso prático, a assimilação de dados de espessura do gelo marinho (SIT) pode ser mais efetiva do que a assimilação de dados de concentração de gelo marinho (SIC) para a redução das incertezas no estado inicial mostrado na curva verde? Justifique sua resposta.
- C) Responda, a partir de um exemplo, como a correta representação numérica dos processos de retroalimentação oceano-atmosferagelo marinho podem reduzir as incertezas de modelos climáticos nas escalas de curto e longo prazos.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 	
20	
21	
22	
23	
24	
25 	
26 	
27	
28	
29 	
30	
31	
32	
33	
34	
35 	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Em modelos numéricos para o tratamento da atmosfera ou do oceano de forma determinística, um conjunto de equações é construído com base nos processos físicos observados no sistema terrestre. Alguns termos dessas equações resolvem explicitamente esses processos, mas uma grande parte não pode ser resolvida explicitamente e requer a construção de parametrizações. Uma parametrização importante para modelos climáticos voltados às simulações de possíveis mudanças climáticas é aquela envolvendo os processos entre o solo, a vegetação e a atmosfera.

Considerando esses fatos, responda aos itens a seguir.

- A) Qual a razão para alguns termos das equações exigirem a construção de parametrizações? Cite pelo menos um exemplo de fenômeno e problemas em sua representação, diferente do apresentado no item b a seguir.
- B) Descreva de forma sucinta os processos envolvidos em uma parametrização que contemple a interação entre solo, vegetação e a atmosfera, incluindo a sua aplicação sobre usos do solo artificiais, tais como as construções de uma cidade.
- C) Considerando a aplicação de modelos climáticos em simulações de cenários futuros (ex. 2050 ou 2100), que aspectos da superfície simulada devem ser considerados e como esses aspectos podem influenciar os resultados das simulações?

1	 	
2	 	
3	 	
4	 	
5	 	
6	 	
7	 	
8	 	
9	 	
10	 	
11	 	
12	 	
13	 	
14	 	
15	 	
16	 	
17	 	
18	 	
19	 	
20	 	
21	 	
22	 	
23	 	
24	 	
25	 	
26	 	
27	 	
28	 	
29	 	
30	 	
31	 	
32	 	
33	 	
34	 	
35	 	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

É sabido que vários processos físicos, químicos e biológicos, naturais ou alterados pela ação humana, alteram o clima da Terra. Para entender melhor o clima terrestre, é preciso levar em consideração estes processos, em todos os compartimentos do Sistema Terrestre.

Sobre o tema, responda aos itens a seguir.

- A) Discorra, detalhadamente, sobre os componentes do Sistema Terrestre no presente. Faça um desenho esquemático que o represente.
- B) Descreva, brevemente, o histórico dos conceitos sobre a ciência do sistema Terrestre.
- C) Descreva, detalhadamente, o papel do oceano e da criosfera como controladores do clima terrestre.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Realização

